Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria

نویسندگان

  • Marco Loog
  • Robert P. W. Duin
  • Reinhold Häb-Umbach
چکیده

ÐWe derive a class of computationally inexpensive linear dimension reduction criteria by introducing a weighted variant of the well-known K-class Fisher criterion associated with linear discriminant analysis (LDA). It can be seen that LDA weights contributions of individual class pairs according to the Euclidian distance of the respective class means. We generalize upon LDA by introducing a different weighting function. Index TermsÐLinear dimension reduction, Fisher criterion, linear discriminant analysis, Bayes error, approximate pairwise accuracy criterion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-class linear dimension reduction by generalized Fisher criteria

Linear Disciminant Analysis is in general unable to find the lower-dimensional feature space which maximizes the class discrimination, even if the class distributions can be assumed to be very simple, e.g. Gaussians with identical covariance matrices. In this paper we reformulate the K-class Fisher criterion as a sum of K(K 1)=2 2-class Fisher criteria. This formulation allows to weigh class pa...

متن کامل

Pareto models for discriminative multiclass linear dimensionality reduction

Linear Discriminant Analysis (LDA) is a popular tool for multiclass discriminative dimensionality reduction. However, LDA suffers from two major drawbacks: (i) it only optimizes the Bayes error for two-class problems where each class is a unimodal Gaussian with different mean, but both classes have equal full rank covariance matrices, and (ii) the multiclass extension does not maximize each pai...

متن کامل

Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition

To improve the class separability of Fisher linear discriminant analysis (FDA) for large category problems, we investigate the weighted Fisher criterion (WFC) by integrating weighting functions for dimensionality reduction. The objective of WFC is to maximize the sum of weighted distances of all class pairs. By setting larger weights for the most confusable classes, WFC can improve the class se...

متن کامل

Gene Selection for Multiclass Prediction by Weighted Fisher Criterion

Gene expression profiling has been widely used to study molecular signatures of many diseases and to develop molecular diagnostics for disease prediction. Gene selection, as an important step for improved diagnostics, screens tens of thousands of genes and identifies a small subset that discriminates between disease types. A two-step gene selection method is proposed to identify informative gen...

متن کامل

Multiclass classifiers based on dimension reduction with generalized LDA

Linear discriminant analysis (LDA) has been widely used for dimension reduction of data sets with multiple classes. The LDA has been recently extended to various generalized LDA methods which are applicable regardless of the relative sizes between the data dimension and the number of data items. In this paper, we propose several multiclass classifiers based on generalized LDA algorithms, taking...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2001